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Abstract-The paper presents an application of thermo-mechanical coupling to thermo-plastics.
Specifically, the interaction of mechanical and thermal effects in a polypropylene plastic is studied
using numerical simulation. The material properties are such as to make such coupling significant
in some industrial applications.

Restricting the study to infinitesimal deformations, the balance laws and axioms of continuum
mechanics and thermodynamics are used to determine the response of polypropylene homopolymers
to stress, strain and temperature cycling, with the specimen assumed to be in a uniform state of
stress/strain/temperature at any instant of time. The numerical experiments are carried out assuming
the specimen to be ideally thermally insulated. Predictions from the model are in agreement with
preliminary industrial test results. Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

Amongst man-made materials, plastics have been in the forefront during the past century
in replacing traditional natural materials. Of the more than fifteen-thousand variants of
these types of materials available around the globe (Rosato et al., 1991), specific products
find applications in almost every facet of modern life, including household articles, com­
ponents used in manufacturing of appliances, machines and tools and in such areas as
medicine, transportation, construction and agriculture.

Generally, plastics are classified into two groups: (a) thermosetting and (b) thermo­
plastic (Parker, 1967). Whereas thermosetting materials, such as resins and polyesters, are
relatively insensitive to heating, thermoplastics are highly temperature sensitive and will
soften and melt when heated. Well-known thermoplastics include various members of the
polyolefin family, such as polyethylene, PE, polypropylene, PP, and vinyl polymers, includ­
ing polyvinylchloride, PVc.

Since less than 10% of the material of thermoplastics is crystalline, with the remainder
being long chain molecules, their thermal response differs from that of crystalline materials
such as metals and ice. As opposed to having a well-defined temperature, referred to as
melting point, thermoplastics soften with an increase in temperature over a wide range,
Typical plastics have one or more specific temperatures, referred to as glass transition points,
above which their mechanical properties are substantially different from those below that
temperature level. In general, ordinary environmental temperatures are relatively close to
and/or above one or more of these transition points as a result of which plastics exhibit
creep and high sensitivity to temperature change. They are also very malleable capable of
sustaining large deformation without fracture. Consequently, in this paper the effects of
damage are neglected in the formulation of the thermo-mechanical response of the material.

Plastics have additional characteristics which are significant from a thermo-mechanical
point of view, Firstly, their coefficient of expansion is 15-20 times that of metals resulting
in relatively large deformations due to temperatures changes; i.e. thermo-mechanical inter­
action is much stronger for these materials than for metals. Secondly, plastics have very
low thermal conductivity, 1/300-1/500-th of that of metals. The heat generated in plastics
by mechanical deformation thus tends to accumulate at or near the area of straining as
opposed to being dissipated away from that source, as is the case in metallic materials.
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Dimensional stability of plastics is known to depend often on the material's entire mech­
anical deformation and thermal history. In addition, the yield point and instantaneous
deformation characteristics of these materials are usually highly temperature dependent
(Matsuoka, 1986), an effect which is taken into account in the formulation of the problem.

This paper presents an application of the fundamental principles of continuum mech­
anics and thermodynamics to thermo-mechanical coupling in plastics. In formulating the
fundamental equations for the problem, it is assumed that strains are infinitesimal and that
no heat exchange occurs between the specimen and its surroundings. As was done for the
one-dimensional case in Sinha (1978) and for three-dimensions in Szyszkowski and
Glockner (1987) and Glockner and Szyszkowski (1990), the total strain rate tensor, eij, is
decomposed into its instantaneous, viscous recoverable and viscous permanent parts, ~Ij'

eij and et, respectively, where ~ij includes the instantaneous elastic, efj, and thermal, eT;,
strain rates. In modelling the instantaneous stress-strain behaviour of the material, the
nonlinearity and temperature dependence of its properties, including its yield point, are
admitted (Matsuoka, 1986). Strain rate dependence of these properties is neglected since
the cycling times for all of the forcing functions used in this study are in the order of
minutes and hours, rather than seconds or fractions of a second. In addition, all other
losses, including internal friction are also neglected. The numerical experiments deal with
a one-dimensional specimen which at any specific instant of time is subjected to a uni­
form/axial state of stress/strain and uniform temperature.

The formulation is used to predict the thermo-mechanical response of polypropylene
homopolymer plastics. To calibrate the range of the material parameters, test data is
used from creep tests (Ogorkiewicz, 1970) and experiments related to the temperature
dependence of the instantaneous nonlinearly elastic behaviour and the yield point of this
material (Matsuoka, 1986). After such calibration, the numerical predictions for thermo­
mechanical interactions are compared with a preliminary industrial test result which was
made available to the authors (Qiu and Nordell, 1994).

2. FORMULATION OF THE PROBLEM

As stated above, in this work it is assumed that the influence of thermal effects on the
mechanical properties of the material is significant, requiring coupling of such effects. It is,
therefore, postulated that the thermo-mechanical response at a generic point, Xb at time, t,
and temperature, T, is defined by the following eight physical variables (Coleman and
Noll, 1963): displacement, u, = ii,(Xb t, T) ; stress, (Jij = O'ljC-'Cb t, T) ; body force/unit mass,
j; = ];(Xk, t, T); internal energy/unit mass, e = e(xb t, T); heat supply/unit mass,
r = P(Xb t, T) ; entropy/unit mass, S = S(Xb t, T) ; heat flux/unit area, q, = q,(Xb t, T) ; and
mass density/unit volume, p = jJ(Xb t, T). Assuming infinitesimal displacement gradients,
the linearized strain tensor, f,'j is defined as usual: f,1j = ~(Ui,j+ uJ.J

The balance laws of continuum mechanics, including conservation of mass, linear and
angular momentum and energy, as well as the entropy production inequality apply to a
single or a group of the above listed eight variables. In addition, the specific properties of
the material are defined through constitutive relations for the variables, (J'J' qi' u, and s. The
effects of internal state variables are neglected.

After defining Helmholtz free energy, ¢, and Gibb's function, t/!, in the usual manner,
the constitutive relations for 81j and S are defined as

, at/!
f,,/ = -p-,,­

o(J1j
(I)

where 8ij denotes the sum of the instantaneous elastic, ef/, and thermal, f,T;, strains,
81j = f,f/ + f,T; = f,1j - f,~J' with e~j representing the viscous portion of the total strain, elf'

Conservation of energy then leads to
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(2)

where the dot above a quantity denotes the total time derivative.
In accordance with (Allen, 1991; Ghoneim, 1990), a general form for Gibb's function

is assumed as

(3)

which includes terms associated with processes related to mechanical, t/Jj«(Ji), and thermal,
t/J2(T), effects, respectively, as well as a term resulting from the interaction between these
effects, t/J3«(Jjj, T).

An explicit form for t/J, eqn (3), is now assumed and written as (Ghoneim, 1991)

in which the thermal term, t/Jb is based on Fourier's law, given by

qj = -kT,j

(4)

(5)

where Cv and k denote specific heat and thermal conductivity of the material, respectively;
Yij represent the thermal coefficients of expansion, To is a reference temperature (at t = 0)
with t/Jo the corresponding value of Gibb's function. The material parameters Cijkl at a point
Xk are usually temperature-dependent.

Using eqns (1), (2) and (4), together with our decomposition of the total strain into
an elastic, viscous, and thermal portion, as given by

(6a, b)

results in eqn (2) taking the form

where

acu T (PCv 2( To T)CT = Cv+2-~-Tln-T - --T 1- -T -In-
oT 0 a~ ~

(7)

(8a)

(8b)

For details of the algebra associated with these results, see Appendix A.
Equations (6a, b), (7) and (8a, b, c) are the governing relations defining thermo-mech­

anical coupling in thermoplastics.
In accordance with models presented in (Szyszkowski and Glockner, 1986; Mah­

renholtz and Wu, 1993) for nonlinear time-dependent materials including ice, it is further
assumed that the viscous portion of the deformation, e~j, can be decomposed into a recov­
erable part, e;j, and a permanent portion, et, i.e. eij = eij +efj • Consequently, and using eqns
(1) and (4), explicit constitutive relations for stress and stress rate are written in the form
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(9a)

(9b)

where Eijlm is an elastic stiffness tensor which is a function of strain level and temperature
and is given as (Menges et al., 1986) Eijlm = Etlm-Dijlm(T) "8, where E~'m are components
of a linear elastic stiffness tensor for E! -> 0, Dij1m are damping coefficient components
(Menges et al., 1986) and E! denotes the effective elastic strain, defined by E! = (1/(1 + v))

J (3/2)efj· efj ; efj = efi - (I/3)e~kbij' At a given level of strain, Eij1m = Cifl~' According to
(Szyszkowski and Glockner, 1986b) and (Wu, 1993) the recoverable and permanent por­
tions of the viscous strain rate are written as functions of stress, time and temperature as

(lOa, b)

where it and /2 denote the octahedral shear stress and the second invariant of the stress
deviator, sij' respectively, defined as usually by it =(3/2)1/2, /2 = ~SijSij, and sij = aij-~akkbij

where A], A2, nl and n2 are material parameters, which may be temperature and/or stress
dependent. Note that the viscous portions of the strain rate are assumed to depend only on
the second invariant of the stress deviator, thus implying incompressible viscous processes,
an assumption which is reasonable for materials like plastics.

The memory function,j(t), appearing in the Volterra integral (eqn (lOa)) describes the
entire stress-strain-temperature history of the material, from time r = 0 up to the current
time r = t. It is defined to have the following characteristics (Szyszkowski et al., 1985):
dj(t)/dt < 0 for all t; j(t)ll~o = 1; and j(t)II~cx) -> O. Here we approximate j(t) by an
exponential function in the form e- qt

, in which '1 is a material parameter (Wu and Mahren­
holtz, 1993). The expression for the recoverable portion of the viscous strain therefore
becomes

3 d itiY.· = - - A s(Jnj-1 "e-q(I-<) dr
II 2 dt 1 Ij

o

which is rewritten in differential form to facilitate the numerical work, as

(II)

(12)

and where '1 is a temperature-dependent material parameter.
For the case of iso-thermal-conductive materials k = k(T) and Yij = y(T)bij' Thus, the

elastic stress-strain relation, eqn (9b), takes the form

and the parameters f3 and K in eqn (7) become

f3 = y( taii - TU I,)

(13)

(14a)

(l4b)

In summary, the thermo-visco-elastoplastic problem for an ideally thermally insulated body
is defined in terms of the following field variables: aij, eli' e'U and T. The heat source function,
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r, is treated as known data. For the determination of the four unknown variables, four
equations are available, eqns (7), (lOb), (12) and (13) (together with (14)), a set ofequations
which together with appropriate initial and boundary conditions constitute a well-posed
initial-boundary value problem.

3. RESULTS

The above defined initial-boundary value problem is solved numerically by a computer­
code in the first step of which the temperature, stress or strain histories, as well as material
parameters, are provided as input. The procedure consists of two main steps:

(i) the calculation of the mechanical response, i.e. the fields of displacement and
stress or strain;

(ii) the calculation of the thermal response which here is restricted to a determination
of the temperature field.

All calculations are performed stepwise iteratively until a convergent solution is
obtained. Convergence is defined by satisfying a condition on the total relative error on
displacement and temperature.

All numerical experiments are carried out on specimens which are ideally thermally
insulated and at any particular instant are assumed to be under a uniform state of stress­
strain-temperature throughout.

Some material parameters used in the paper are taken from (Parker, 1967; Rosato et
al., 1991) while the viscous parameters are determined from creep curves for different stress
levels and different temperatures given in (Ogorkiewicz, 1970). Because material damage
for polymers during viscous deformation is negligible, it is assumed that creep curves
include only primary and secondary stages. The material parameter values used and their
temperature and/or stress/strain dependence are summarized in Appendix B.

3.1. Calibration of the model
Some of the material parameters for the model used here were determined using data

from creep tests and experiments on the temperature dependence of the yield point for PP
homopolymers (Ogorkiewicz, 1970). Specifically, creep test data with four different stress
and two different temperature levels were used (see Figs la, b).

The instantaneous stress-strain response of this thermo-plastic at five different tem­
perature levels, 20° ~ T ~ 100°C, as defined by the model, is indicated on Fig. 2a. The
curves on this figure indicate instantaneous behaviour for these materials which is similar
to that exhibited by experimental data (Matsuoka, 1986). The maxima from the curves on
Fig. 2a were taken as the yield points and were plotted against temperature (see Fig. 2b).
To fit the model's predictions to the experimental data shown on this figure, the activation
energy, Qv and the damping parameter D(To), were suitably adjusted for various tem­
perature levels (see Appendix B). Note that the glass transition temperature for PP homo­
polymer is given as approximately 5°C (Rosato et al., 1991).

3.2. Numerical tests
Using the above described model, the following numerical simulations were carried out:

(i) Strain cycling with strain levels varying from 0 to a selected maximum, Gmax, with
Gmax = O.oI, 0.02, 0.03 and 0.04, respectively, and with the cycling period ranging from
0.25 to 1.0 hour.

(ii) Stress cycling, with stress levels ranging from 0 to a maximum, (Jmax' with (Jmax = 5, 10
and 15 MPa, respectively, and with the cycling period being 1.0 hour for all tests.

(iii) Temperature cycling, with the temperature varying from 20°C to a maximum, Tman

with Tmax = 40°, 60° and 80°C, and a constant cycling period of 2 hours.

The shape of the forcing functions for all tests are as shown on Fig. 3.
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3.2.1. Strain cycling tests. Some of the results from the strain cycling simulations are
depicted on Figs 4-6. The first of these figures shows the resulting stress-strain output and
the temperature change due to a strain cycling from 0 to 0.01 (Fig. 4a) and 0 to 0.03
(Fig. 4b) with a cycling time of 1.0 hour. Initial conditions of the test specimen (at t = 0)
are assumed to be (J = 0 and T = 20°e. The effect of strain cycling amplitude on the
temperature change, !J.T, is shown on Fig. 5 for four different values of 8maX" The maximum
temperature change after 1500 cycles (1500 hours) was 50c C for "max = 0.04, at which state
the material had reached its yield point.

The third figure, Fig. 6, depicts the effects of cycling period on the temperature change,
for "max = 0.03, with the cycling period being 0.25,0.5 and 1.0 hour, respectively, and for a
total of 2000 cycles in each test.

3.2.2. Stress cycling tests. Some of the numerical results from the stress cycling simu­
lations are shown on Figs 7 and 8. The first one indicates the stress-strain response and the
resulting temperatures change ofa PP homopolymer thermally insulated specimen subjected
to stress cycling with the stress level varying from 0 to a maximum, (Jmax, where (Jmax = 5
and 15 MPa, for Figs 7a, band 7c, d, respectively. The cycling period was held constant at
1.0 hour. The effect of stress cycling amplitude on the resulting temperature change is
indicated on Fig. 8 for (Jmax = 5, 10 and 15 MPa, respectively, with the cycling period being
1.0 hour and the simulated tests running for 10,000 cycles.

3.2.3. Temperature cycling tests. In the simulated tests with temperature cycling, in
addition to the above noted conditions, the specimen was assumed to be constrained at
both ends against axial displacement. The forcing function (see Fig. 3b) represents a
temperature variation from 20c C to a maximum, Tmax, with Tmax = 40°,60° and 80'C, for
the three test results depicted on Fig. 9a--e, respectively. The cycling period for all three
tests was constant at 1.0 hour. The curves on Fig. 9 depict the resulting cycling and average
stress due to the first 20 cycles of such temperature cycling.
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The resulting stress from such temperature cycling during 200 cycles is shown on Figs
10-12 for!1T = 20c

, 40° and 60°, respectively. Note that on these last three figures only the
average stress for each cycle, rather than the stress cycling amplitude, is depicted.

These last three figures also show the resulting average strain for each cycle, broken
out into its components of elastic, eC

, viscous recoverable, er
, and viscous permanent, f!,

portions. Since the ends of the specimen are assumed to be fixed against axial motion, the
sum of these three components of strain are equal and opposite to the average thermal
strain present in the specimen at any instant of time. Note that the viscous permanent
portion of the average strain is extremely small in all three cases since the loading and
unloading resulting from the relatively slow temperature cycling does not accumulate any
significant permanent deformation.

4. DISCUSSION OF RESULTS AND CONCLUSIONS

The numerical experiments on the first two creep stages of PP homopolymers (see Fig.
1) allowed determination of the value of some of the viscous material parameters which
were not available in the published literature. The values determined from this calibration
procedure were used in all subsequent numerical tests.

The nonlinearity of the instantaneous response of the material (see Fig. 2a) becomes
significant only at larger strain levels, as is also confirmed by the stress cycling results on
Fig. 4, with the lower figure (Fig. 4c) showing some nonlinearity. In addition, the stress­
strain variation appears to stabilize at a certain level after a minimum number of cycles.

As expected, larger strain amplitudes result in a higher temperature increase (see Fig.
5). The three curves on Fig. 6, however, are all three for the same number of cycles and
amplitude and yet the temperature increase varies significantly between the three curves.
This suggests that in the case of the lower frequency forcing function, the viscous part of
the deformation plays an increased role and brings about significant thermo-mechanical
coupling.

In Figs 9-12 the effects of temperature cycling are depicted. Note that the average
stress level approaches a constant value after an initiallQ--20 cycles. This average value can
approach zero for certain temperature cycling amplitudes (see Figs 11 and 12).

The temperature changes produced by prolonged cyclic mechanical straining, predicted
to be in the range of sO-soGe, includes the measured value of noe temperature increase at
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the centre of a specimen subjected to cyclic axial straining for over 10 hours (Qiu and
Nordell,1994).

In summary, this paper presents an application of thermo-mechanical coupling to PP
homopolymer plastics. The numerical test results presented here, together with preliminary
industrial test data (Qiu and Nordell, 1994) indicate that for certain materials, specifically
thermoplastics and rubbers, thermo-mechanical coupling during prolonged cyclic loading
can be a significant factor. Such effects should, therefore, be of interest to the designer and
be included in the analysis of various components for machines and structures.
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APPENDIX A

The specific entropy for the present problem is rewritten as

from which, the rate of the specific entropy, s, is obtained in the form

t cC" T (PC, .( To T)+C-+2-Tln----TT I---In-
, T aT To aT" T To

Using eqn (A2) in (2) leads to eqn (7).

(AI)

(A2)

APPENDIX B

Material: polypropylene (PP) homopolymer; melt temperature: 168°C
Glass transition temperature"" 5°C; density: p = 0.91 gjcm3

Specific heat: C = 1924.64 J/(kg,cq; thermal conductivity: k = 177.94k W/(m"'KO)
Coefficient of thermal expansion: y = 1.35' 10-4 lrC for 20° ,;; T,;; 80°C
Poisson's ratio: v = 0.33 ; ultimate tensile strain: bUll = 200-700%

The temperature-dependence of the material parameters is estimated on the basis of Arrhenius's law. R, = 8.31
Jj(mol'KO)

Parameters for elastic deformation:

E(T,B) = EO -D(To)e

EO = 124I.0 MPa, D(To) = 10739.8 MPa at 20GC; D(T) = D(To) .exp[~::Go - ~)]

Q, = 12.79kJjmol

Viscous parameters are determined from creep curves as :
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/l(To) = 0.041h-' at20°C; /leT) = /l(To)'exp[~:Go - ~)J Q, = 12.7lkJjmol

Al (To) = 2.788 '10- 5 MPa- n
" h- I at 20

p e; Al (T) = Al (To) 'exp[~:Go - ~)];

Q, = 36.85kJjmol

- 0 [Q,( I I)Jn, (0-, To) = l.l +0.030- at 20 C; nl (0-, T) = nl (0-, To)' exp R, To - l' ;

Q, = 0.508 kljmol

A,(To) = 5.33' 10- 7 MPa- n
,. h- I at 20

p e; A,(T) = A,(To)' exp[~:(~o - ~)1
Q, = 6.354kJjmol

[Q,( 1 I)Jn,(To) = 1.04 at 20°C; n,(T)=n,(To)'exp R, To -1' ; Q,=0.508kJjmol.

•


